Modelling stellar activity with Gaussian process regression networks

نویسندگان

چکیده

Stellar photospheric activity is known to limit the detection and characterisation of extra-solar planets. In particular, study Earth-like planets around Sun-like stars requires data analysis methods that can accurately model stellar phenomena affecting radial velocity (RV) measurements. Gaussian Process Regression Networks (GPRNs) offer a principled approach simultaneous time-series, combining structural properties Bayesian neural networks with non-parametric flexibility Processes. Using HARPS-N solar spectroscopic observations encompassing three years, we demonstrate this framework capable jointly modelling RV traditional indicators. Although consider only simplest GPRN configuration, are able describe behaviour at least as previously published methods. We confirm correlation between time series reaches maximum separations few days, find evidence non-stationary in series, associated an approaching minimum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Regression Networks

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the nonparametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive dis...

متن کامل

Gaussian Process Regression Networks Supplementary Material

In this supplementary material, we discuss some further details of our ESS and VB inference (Sections 1 and 2), the computational complexity of our inference procedures (Section 3), and the correlation structure induced by the GPRN model (Section 4). We also discuss multimodality in the GPRN posterior (Section 5), SVLMC, and some background information and notation for Gaussian process regressi...

متن کامل

A Gaussian process framework for modelling stellar activity signals in radial velocity data

To date, the radial velocity (RV) method has been one of the most productive techniques for detecting and confirming extrasolar planetary candidates. Unfortunately, stellar activity can induce RV variations which can drown out or even mimic planetary signals – and it is notoriously difficult to model and thus mitigate the effects of these activity-induced nuisance signals. This is expected to b...

متن کامل

Hierarchical Gaussian Process Regression

We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...

متن کامل

Latent Gaussian Process Regression

We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2022

ISSN: ['0035-8711', '1365-8711', '1365-2966']

DOI: https://doi.org/10.1093/mnras/stac3727